Contoh Soal Trigonometri Sudut Pertengahan
buatlah 3 soal dan jawaban trigonometri sudut rangkap dan pertengahan
1. buatlah 3 soal dan jawaban trigonometri sudut rangkap dan pertengahan
Soal No. 1
Diketahui sin x = 3/5 dengan sudut x adalah lancip. Tentukan nilai dari sin 2x.
Pembahasan
sin x sudah diketahui, tinggal cos x berapa nilainya
cos x = 4/5
Berikutnya gunakan rumus sudut rangkap untuk sinus,
sin 2x = 2 sin x cos x
= 2 (3/5)(4/5) = 24/25
Soal No. 2
Diketahui sin x = 1/4, tentukan nilai dari cos 2x.
Pembahasan
Rumus sudut rangkap untuk cosinus.
cos 2x = cos2 x − sin2x
cos 2x = 2 cos2 x − 1
cos 2x = 1 − 2 sin2 x
Gunakan rumus ketiga
cos 2x = 1 − 2 sin2 x
= 1 − 2 (1/4)2
= 1 − 2/16 = 16/16 − 2/16 = 14 / 16 = 7 / 8
Soal No. 3
Diketahui cos 2A = 1/3 dengan A adalah sudut lancip. Tentukan nilai tan A.
A. 1/3 √3
B. 1/2 √2
C. 1/3 √6
D. 2/3 √6
E. 2/5 √5
Pembahasan
Dari rumus cosinus untuk sudut rangkap akan diperoleh terlebih dahulu nilai sin A:
cos 2A = 1 − 2 sin2 A
1/3 = 1 − 2 sin2 A
2 sin2 A = 1 − 1/3
2 sin2 A = 2/3
sin2 A = 1/3
sin A = 1/√3
Menentukan tan A, liat segitiga berikut, sin A = 1/√3 artinya perbandingan pada segitiga sikusikunya adalah depan 1, miringnya √3, dari situ bisa di cari panjang sisi samping:
2. contoh soal perbandingan trigonometri sudut negatif
Jawaban:
for you and I don't know
Sin (-55)° = -Sin 55
Cos (-145)° = Cos 145
Tan (300)° = -Tan 300°
Cot (-235)° = -Cot 245°
Sec (-245)° = Sec 245°
Cosec (-265)° = -Cosec 265
3. buatlah 5 contoh soal sudut istimewa trigonometri!
Jawaban:
gak tau soalnya aku juga lagi nyari jawabannya
4. contoh soal trigonometri
Jawaban:
120 = 90 + 30, jadi sin 120o dapat dihitung dengan
Sin 120o = Sin (90o + 30o) = Cos 30o (nilainya positif karena soalnya adalah sin 120o, di kuadran 2, maka hasilnya positif)
Cos 30o = ½ √3
Atau dengan cara lain:
Sama seperti 180o-80o.
Sin 120o = Sin (180o – 60o) = sin 60o = ½ √3
4. Tentukan nilai dari: 2 cos 75° cos 15°
Jawaban:
2 cos 75° cos 15° = cos (75 +15)° + cos (75 – 15)°
= cos 90° + cos 60°
= 0 + ½
= ½
5. Buktikan bahwa sin4 α – sin2 α = cos4 α – cos2 α
Jawaban:
sin4 α – sin2 α = (sin2 α)2 – sin2 α
= (1 cos2 α) 2 – (1 cos2 α)
= 1 – 2 cos2 α + cos4 α – 1 + cos2 α
= cos4 α – cos2 α
6. Diketahui p dan q adalah sudut lancip dan p – q = 30°. Jika cos p sin q = 1/6 , maka nilai
dari sin p cos q =
Jawaban:
p – q = 30°
sin (p – q)= sin 30°
sin p cos q – cos p sin q = ½
sin p cos q – 1/6 = ½
sin p cos q = ½ + 1/6 = 4/6
jadi nilai sin p cos q = 4/6
7. Pada segitiga ABC lancip, diketahui cos A = 4/5 dan sin B =12/ 13 , maka sin C =
Jawaban:
Karena segitiga ABC lancip , maka sudut A,B dan C juga lancip, sehingga :
cos A = 4/5, maka sin A = 3/5, (ingat cosami, sindemi dan tandesa)
sin B = 12/13, maka cos B = 5/13
A + B + C = 180°, (jml sudut -sudut dalam satu segitiga = 180)
A + B = 180 – C
sin (A + B) = sin (180 – C)
sin A . cos B + cos A.sin B = sin C, (ingat sudut yang saling berelasi : sin(180-x) = sin x)
sin C = sin A.cos B + cos A.sin B
sin C = 3/5.5/13 + 4/5.12/13
sin C = 15/65 + 48/65 = 63/65
8. A dan B titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat ACB=45˚ ,Jika garis CB =p dan CA=2p√2 , maka panjang terowongan itu adalah…
Jawaban:
Aturan Cosinus
AB²=CB²+CA²-2CA.CB cos C
AB²=p²+(2p√2)²-2(p.2p√2) cos 45˚
AB²=p²+8p²-2(2p²√2)√2/2
AB²=9p²-√2(2p²√2)
AB²=9p²-4p²
AB²=5p²
AB=√5p²
AB=p√5
9. Diketahui segitiga ABC dengan panjang sisi AB=6 cm , besar sudut A=30˚ dan sudut C=120˚,Luas segitiga ABC adalah…
Jawaban:
Panjang CB
a/sinA = c/sinC
a/sin30˚=6/sin120˚
a/sin30˚=6/sin60˚
a/1/2=6/√3/2
a√3/2=3
a=2√3/3 x 3
a=2√3
Luas Segitiga
L=1/2 a x c sin30˚
L=1/2 x 2√3 x 6 x 1/2
L=1/4 x 12√3
L=3√3 cm²
10. Diketahui segitiga ABC dengan panjang sisi AB=6 cm ,BC=8 cm AC=7 cm. Nilai cos A adalah…
Jawaban:
Cos A=(AB²+AC²-BC²)/2(AB . AC)
Cos A=6²+7²-8²/2(6 . 7)
Cos A = 36+49-64/2(42)
Cos A=21/84
11. Nilai dari cos 1200˚ adalah…
Jawaban:
cos 1200˚
= cos( 120˚ +3.360˚ )
=cos 120˚
= – cos60˚
= -1/2
12. Pada ∆ ABC diketahui a+b=10 , sudut A=30˚ dan sudut 45˚ , maka panjang sisi b adalah…
Jawaban:
a+b=10
a=10-b
Aturan Sinus
a/sin A = b/sin B
10-b/ sin 30 = b/sin 45
10-b/1/2= b/√2/2
√2/2(10-b)=b/2
(10√2-b√2)/2=b/2
5√2-b√2/2=b/2
5√2=b√2/2 + b/2
5√2=(b√2+b)/2
5√2=b(√2+1)/2
b=5√2 x 2/(√2+1)
b=10√2/(√2+1) x (√2-1)/(√2-1)
b=20-10√2
b=10(2-√2)
5. tuliskan contoh soal penjumlahan 2 sudut trigonometri beserta jawabannya
Penjelasan dengan langkah-langkah:
maaf jika ad yg salah
6. contoh soal tentang trigonometri
Nyatakanlah perbandingan trigonometri berikut ini ke dalam perbandingan trigonometri sudut komplemennya! a. sin 52o
b. cos 16o
c. tan 57o
d. cot 28o
e. sec 56o
f. cosec 49o
Pembahasan
Perhatikan bahwa semua sudut yang ditanya berada pada kuadran I sehingga semua nilai perbandingan trigonometrinya positif.
sin 52o = sin (90o - 38o) ⇒ sin 52o = cos 38o
Jadi, sin 52o = cos 38o.
cos 16o = cos (90o - 74o) ⇒ cos 16o = sin 74o
Jadi, cos 16o = sin 74o.
tan 57o = tan (90o - 33o) ⇒ tan 57o = cot 33o
Jadi, tan 57o = cot 33o.
cot 28o = cot (90o - 62o) ⇒ cot 28o = tan 62o
Jadi, cot 28o = tan 62o.
sec 56o = sec (90o - 34o) ⇒ sec 56o = cosec 34o
Jadi, sec 56o = cosec 34o.
cosec 49o = cosec (90o - 41o) ⇒ cosec 49o = sec 41o
Jadi, cosec 49o = sec 41o.
7. Buatlah soal cerita trigonometri sudut rangkap
Seekor kelinci yang berada di lubang tanah tempat persembunyiannya melihat seekor elang yang sedang terbang dengan sudut
60
∘
(lihat gambar). Jika jarak antara kelinci dan elang adalah
18
meter, maka tinggi elang dari atas tanah adalah
⋯
8. Dengan menggunakan prinsip sudut paruh/pertengahan trigonometri, tentukan nilai dari:
Jawaban:
TrigononetriPenjelasan dengan langkah-langkah:
A. Sin 67,5⁰= +-1/2√(2(1-Cos 135) => kuadran 1
= 1/2√(2(1-(-1/2√(2)
= 1/2√(2(1+1/2√(2)
= 1/2√(2+√(2)
Cos 135 = Cos (180-45)
= - Cos 45
= -1/2√(2)
B. Sin 22,5⁰=+-1/2√(2(1-Cos 45) => kuadran 1
= 1/2√(2(1-1/2√(2)
= 1/2√(2-√(2)
C. Tan 165⁰ = 1- Cos 330 => kuadran 2
Sin 330
= 1- 1/2√(3)
-1/2√(3)
= 1-1/2√(3) x -1/2√(3)
-1/2√(3) -1/2√(3)
=-1/2√(3)+1/4.3
1/4.3
=-1/2√(3)+3/4
3/4
= 3/4-1/2√(3)
3/4
= 4(3/4-1/2√(3)
3
= 3-2√(3)
3
Cos 330 = Cos ( 360-30)
= Cos 30
= 1/2√(3)
Sin 330 = Sin (360-30)
= - Sin 30
= -1/2√(3)
Demikian
Semoga membantu dan bermanfaat!
9. Contoh soal trigonometri
1. Tentukan nilai sin a dan cot a, jika diketahui cos a = 3/5 !
2. Tentukan nilai cos b dan cosec b, jika diketahui tan b = √2 !
10. buatlah contoh soal beserta jawaban nya tentang 1. trigonometri jumlah dan selisih dua sudut 2. trigonometri sudut rangkap3. perkalian dan penjumlahan bentuk trigonometri note: contoh nya minimal 10 soal
Jawaban:
1. cos 105⁰ + cos 15⁰
Jawab :
cos 105⁰ + cos 15⁰ = 2 cos ½ ( A + B ) cos ½ ( A - B )
= 2 cos ½ ( 105⁰ + 15⁰ ) cos ½ ( 105⁰
= 2 cos ½ (120⁰) cos ½ ( 90⁰ )
= 2 cos 60⁰cos 45⁰
= 2 (½) (½ akar 2 )
= ½ akar 2.
JADIKAN JAWABAN TERCERDAS YAA!
SEMOGA MEMBANTU....
JANGAN LUPA FOLLOW....
11. Buatkan resume tentang:A. Ukuran sudut (derajat dan radian)B. perbandingan Trigonometri pada segitiga siku-sikuC. nilai perbandingan trigonometri untuk sudut istimewaD. perbandingan Trigonimetri sudut-sudut pada semua kuadranE. perbandingan Trigonometri untuk sudut-sudut yang berelasiF. identitas TrigonometriBuatkan masing² 1 contoh soal berdasarkan materi
Penjelasan dengan langkah-langkah:
A.ukuran sudut ( derajat dan radian)
Jawaban:
B.perbandinga trigonometri pada segitiga siku-siku
Penjelasan dengan langkah-langkah:
maaf kalau salah
12. buatlah contoh soal beserta jawaban nya tentang 1. trigonometri jumlah dan selisih dua sudut 2. trigonometri sudut rangkap3. perkalian dan penjumlahan bentuk trigonometri note: contoh nya minimal 10 soal
Penjelasan dengan langkah-langkah:
Tolong jadikan jawaban tercerdas Dan jangan lupa follow dan like
13. ada yang bisa kasih 3 contoh soal tentang nilai trigonometri pada operasi aljabar pada sudut istimewa di semua kuadran , thanks
1. jika 0 derajat kurang dari tetha kurang dari 90 derajat maka
(5 cos tetha - 4) : ( 3 - 5 sin tetha) - (3 + 5 sin tetha) :( 4+5 cos tetha)=.....
2.jika tan tetha + sec tetha = x maka nilai tan tetha =....
3.jika sin tetha +4 cos tetha = 5 maka nilai dari sin tetha =......
14. Trigonometri - Perbandingan, Sudut Istimewa, Identitas, & Contoh Soal - Brainly
Materi tentang perbandingan trigonometri, sudut istimewa trigonometri, dan identitas trigonometri, beserta beberapa contoh soal mengenai trigonometri.
PembahasanPerbandingan trigonometri pada segitiga siku-sikuMisalkan terdapat sebuah segitiga siku-siku ABC dengan sudut siku-siku di B. Panjang sisi AB merupakan jarak pada sumbu- x, panjang sisi BC merupakan jarak pada sumbu- y, dan panjang sisi AC merupakan sisi miring, atau dapat ditulis sebagai berikut:
AB = x
BC = y
AC = r
dengan r² = x² + y²
Maka berlaku perbandingan trigonometri sudut A berikut:
sin A = [tex]\frac{sisi depan}{sisi miring}[/tex] = [tex]\frac{y}{r}[/tex]
cos A = [tex]\frac{sisi samping}{sisi miring}[/tex] = [tex]\frac{x}{r}[/tex]
tan A = [tex]\frac{sisi depan}{sisi samping}[/tex] = [tex]\frac{y}{x}[/tex]
cosec A = [tex]\frac{1}{sin A}[/tex] = [tex]\frac{r}{y}[/tex]
sec A = [tex]\frac{1}{cos A}[/tex] = [tex]\frac{r}{x}[/tex]
cotan A = [tex]\frac{1}{tan A}[/tex] = [tex]\frac{x}{y}[/tex]
Perbandingan trigonometri pada sudut istimewaSudut istimewa pada segitiga diantaranya: 0°, 30°, 45°, 60°, 90°
Perbandingan trigonometri pada sudut 0°sin 0° = 0
cos 0° = 1
tan 0° = 0
Perbandingan trigonometri pada sudut 30°sin 30° = [tex]\frac{1}{2}[/tex]
cos 30° = [tex]\frac{1}{2}[/tex]√3
tan 30° = [tex]\frac{1}{3}[/tex]√3
Perbandingan trigonometri pada sudut 45°sin 45° = [tex]\frac{1}{2}[/tex]√2
cos 45° = [tex]\frac{1}{2}[/tex]√2
tan 45° = 1
Perbandingan trigonometri pada sudut 60°sin 60° = [tex]\frac{1}{2}[/tex]√3
cos 60° = [tex]\frac{1}{2}[/tex]
tan 60° = √3
Perbandingan trigonometri pada sudut 90°sin 90° = 1
cos 90° = 0
tan 90° = ∞
Identitas trigonometriBeberapa rumus identitas yang terdapat dalam trigonometri sebagai berikut
sin²x + cos²x = 1tan²x + 1 = sec²xcotan²x + 1 = cosec²xtan x = [tex]\frac{sin x}{cos x}[/tex]cotan x = [tex]\frac{cos x}{sin x}[/tex]cosec A = [tex]\frac{1}{sin A}[/tex]sec A = [tex]\frac{1}{cos A}[/tex]cotan A = [tex]\frac{1}{tan A}[/tex]Beberapa rumus identitas trigonometri sudut rangkap
sin 2x = 2 sin x cos xcos 2x = cos²x - sin²xtan 2x = [tex]\frac{tan x}{1 - tan^{2}x}[/tex]Contoh soal mengenai trigonometri1. Apabila pada segitiga ABC, dengan siku-siku di B. Diketahui sin A = [tex]\frac{4}{5}[/tex], dengan A sudut lancip. Tentukan besar perbandingan trigonometri lainnya!
Jawab:
sin A = [tex]\frac{4}{5}[/tex]
sin A = [tex]\frac{y}{r}[/tex]
Maka diperoleh
y = 4 dan r = 5
r² = x² + y²
5² = x² + 4²
25 = x² + 16
x² = 25 - 16
x² = 9
x = √9
x = 3
Sehingga perbandingan trigonometri lainnya adalah
cos A = [tex]\frac{x}{r}[/tex]
cos A = [tex]\frac{3}{5}[/tex]
tan A = [tex]\frac{y}{x}[/tex]
tan A = [tex]\frac{4}{3}[/tex]
cosec A = [tex]\frac{r}{y}[/tex]
cosec A = [tex]\frac{5}{4}[/tex]
sec A = [tex]\frac{r}{x}[/tex]
sec A = [tex]\frac{5}{3}[/tex]
cotan A = [tex]\frac{x}{y}[/tex]
cotan A = [tex]\frac{3}{4}[/tex]
2. Tentukan nilai dari sin 0° + 2 cos 30° - tan 45°
Jawab:
sin 0° + 2 cos 30° - tan 45° = 0 + 2([tex]\frac{1}{2}[/tex]√3) - 1
sin 0° + 2 cos 30° - tan 45° = √3 - 1
sin 0° + 2 cos 30° - tan 45° = -1 + √3
∴ Jadi nilai dari sin 0° + 2 cos 30° - tan 45° adalah -1 + √3
3. Buktikan bahwa (sin x + cos x)² = 1 + sin2x
Jawab:
(sin x + cos x)² = (sin x + cos x)(sin x + cos x)
(sin x + cos x)² = sin x.sin x + sin x.cos x + cos x.sin x + cos x.cos x
(sin x + cos x)² = sin²x + sin x.cos x + sin x.cos x + cos²x
(sin x + cos x)² = sin²x + cos²x + 2 sin x.cos x
(sin x + cos x)² = 1 + sin 2x
∴ Jadi terbukti bahwa (sin x + cos x)² = 1 + sin2x
Pelajari lebih lanjutMenyederhanakan bentuk trigonometri https://brainly.co.id/tugas/16610Menentukan nilai dari sinus suatu sudut https://brainly.co.id/tugas/22869793---------------------------------------------------Detil jawabanKelas: 10
Mapel: Matematika
Bab: Trigonometri
Kode: 10.2.7
Kata kunci: trigonometri, perbandingan, sudut istimewa, identitas, contoh soal
15. contoh soal trigonometri
Berapa nilai sin 120o?
Jawaban:
120 = 90 + 30, jadi sin 120o dapat dihitung dengan
Sin 120o = Sin (90o + 30o) = Cos 30o (nilainya positif karena soalnya adalah sin 120o, di kuadran 2, maka hasilnya positif)
Cos 30o = ½ √3
Atau dengan cara lain:
Sama seperti 180o-80o.
Sin 120o = Sin (180o – 60o) = sin 60o = ½ √3
Posting Komentar untuk "Contoh Soal Trigonometri Sudut Pertengahan"